Schrödinger's SAT: Generalizing Quantum Bogosort to Prove P = NP Under Many-Worlds Quantum Mechanics

Melody "boringcactus" Horn

ABSTRACT

Quantum bogosort is a well-known variant of bogosort that exploits the quantum nature of the universe to sort a list in linear time under the many-worlds interpretation of quantum mechanics. We generalize this algorithm to solve the Boolean satisfiability problem in O(n) time. The Boolean satisfiability problem is the original NPcomplete problem; as such, this proves that P = NP. This destroyes the RSA cryptosystem.

KEYWORDS

satisfiability, time complexity, revolutions in our understanding of computing, unsolved problems in millennium prize eligibility

1 INTRODUCTION

The Boolean satisfiability problem was the first problem proved to be NP-complete [1, 4]. This result serves as the foundation for all of complexity theory.

Bogosort is a randomized list sorting algorithm that runs in average-case O(n!) time [2]. Quantum bogosort is an adaptation of bogosort that explores all random options simultaneously in different universes and therefore sorts the list in O(n) time [3].

2 PRIOR ART

The bogosort algorithm given in [2] sorts an array *a* with *n* elements as follows:

A · · · · · · · · · · · · · · · · · · ·	Algorithm	1 Bogosort
--	-----------	-------------------

1:	proced	lure	BOGOSORT(a)
----	--------	------	-----------	---	---

```
2: while a[1 \dots n] is not sorted do
```

- 3: randomly permute a[1...n]
- 4: end while
- 5: end procedure

The quantum bogosort algorithm given in [3] may be formalized analogously as follows:

Algorithm 2 Quantum Bogosort		
1:	procedure Quantum-Bogosort(a)	
2:	randomly permute $a[1 \dots n]$	
3:	if <i>a</i> [1 <i>n</i>] is not sorted then	
4:	destroy the entire universe	
5:	end if	
6:	end procedure	

So long as the random numbers in step 2 are random at a quantum level, the many-worlds interpretation of quantum mechanics indicates that there will be a world where each random permutation is chosen. As such, step 4 ensures that only the worlds where the correct random permutation was chosen continue to exist. Since steps 2 and 3 can run in O(n) time, and step 4 is independent of nand therefore runs in O(1) time, quantum bogosort will sort the array a in O(n) time.

3 METHODS

The Boolean satisfiability problem can be formalized as follows: given some Boolean formula $\Phi(x_1, \ldots, x_n)$ on *n* variables, find a truth assignment $(x_1, \ldots, x_n) = (T, \ldots, F)$ such that $\Phi(x_1, \ldots, x_n)$ is true, if it exists.¹

To solve this problem, we present the following algorithm:

Algorithm 3 Schrödinger's SAT		
1:	procedure Schrödinger's-SAT(Φ)	
2:	for $i \leftarrow 1, n$ do	
3:	Randomly guess either $x_i \leftarrow T$ or $x_i \leftarrow F$	
4:	end for	
5:	if $\neg \Phi(x_1, \ldots, x_n)$ then	
6:	destroy the entire universe	
7:	end if	
8:	return (x_1, \ldots, x_n)	
9:	end procedure	

As with quantum bogosort, if the guess in step 3 is random at a quantum level, there will be a world for each value, and so by step 4 there is a world for every possible truth assignment. As such, by step 8 we have found a satisfying truth assignment. (Sufficiently bored or curious readers may wish to implement this algorithm and run it on $\Phi(x_1) = x_1 \land \neg x_1$.)

Since there are *n* guesses made, each guess takes O(1) time, and the formula can be evaluated in O(n) time, this algorithm finds a satisfying assignment in O(n) time, demonstrating that Boolean satisfiability is in P and therefore that P = NP.

ACKNOWLEDGMENTS

To Joe.

REFERENCES

- Stephen A. Cook. 1971. The complexity of theorem-proving procedures. In Proceedings of the third annual ACM symposium on Theory of computing STOC '71. ACM Press, Shaker Heights, Ohio, United States, 151–158. https://scihub.se/10.1145/800157.805047
- [2] Hermann Gruber, Markus Holzer, and Oliver Ruepp. 2007. Sorting the Slow Way: An Analysis of Perversely Awful Randomized Sorting Algorithms. In Fun with Algorithms, Pierluigi Crescenzi, Giuseppe Prencipe, and Geppino Pucci (Eds.). Vol. 4475. Springer Berlin Heidelberg, Berlin, Heidelberg, 183–197. https://scihub.se/10.1007/978-3-540-72914-3_17 Series Title: Lecture Notes in Computer Science.
- The Other Tree. 2009. Quantum Bogosort. mathNEWS 111, 3 (Oct. 2009), 13. https://mathnews.uwaterloo.ca/wp-content/uploads/2014/08/v111i3-compressed.pdf

¹As is standard practice, we handwave away the difference between the decision problem and the search problem.

[4] B.A. Trakhtenbrot. 1984. A Survey of Russian Approaches to Perebor (Brute-Force Searches) Algorithms. IEEE Annals of the History of Computing 6, 4 (Oct. 1984),

384-400. https://sci-hub.se/10.1109/MAHC.1984.10036